

Overview of Disposal R&D Activities

David Sassani

Sandia National Laboratories SFWST National Technical Director

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2024-06184PE

1

 U.S. DEPARTMENT OF
 Office of

 NUCLEAR ENERGY
 Spent Fuel and Waste Science and Technology (SFWST)

Overview of Presentation Materials

- Overview of Program
 - Program technical coverage
 - Disposal concepts research, development, demonstration
 - Disposal program conceptual schedule
- Capability Development and Demonstrations
- Processes to Assess SFWST Disposal Research (DR) Activity Progress
 - DR Program Planning
 - 2012 Roadmap and assessment
 - 2019 Roadmap reevaluation/gap analysis
 - DR Five-year Plan
 - Geologic Disposal Safety Assessment (GDSA) Framework
 - Roadmap reimagination and Features, Events, and Processes (FEP) Tool
- Summary

5/21/2024

FY 24 SFWST R&D Campaign Structure (EVOLVING)

5/21/2024

Program Strategic Focus: Disposal Research (DR)

Provide a **sound technical basis for multiple** viable disposal options in the US

- Spent nuclear fuel (SNF)
 - Commercial
 - DOE-managed
- High-level nuclear waste (HLW)

Increase confidence in the robustness of generic disposal concepts

Develop the science and engineering tools needed to support disposal concept implementation

Argillite Repository Example

Meuse/Haute Marne, France (ANDRA 2005)

Crystalline Repository Example Forsmark, Sweden (SKB 2011) https://www.posiva.fi/en/ index/finaldisposal

- Wide range of geologic disposal concepts
 - Prioritize the generic R&D for each
 - Define complete enough for generic R&D
- Utilize & contribute to vast <u>international</u> <u>experience</u>
- Integrate cross-cutting aspects clearly
- Poise Program to Leap into Next Stage

Disposal Research (DR) Program Conceptual Timeline

How Repositories Work: Basic Barrier Functions

6

FR

NUCLEAR ENERGY

Features, Events, and Processes (FEP)

- Features are physical components of the repository system.
- **Processes** are phenomena that act continually over a long time scale.
- Events are phenomena that occur over a short time scale.
- FEP are evaluated and screened for either being
 - Included into, or
 - Excluded from
- The Geologic Disposal Safety Assessment Model (GDSA) of the System Performance

NUCLEAR ENERGY

The Geologic Disposal Safety Assessment (GDSA) Model

https://www.nwtrb.gov/meetings/past-meetings/fall-2021-virtual-board-meeting---november-3-4-2021

Capability Demonstrations – Not Safety Assessments

- Demonstrations Build Capabilities/Process Understanding
 - Huge Dinner Party (not just family)
 - Practice meal preparation (until enjoyable or servable?)
 - Iterate cooking and refine ingredients, timing, thermal, technique...
 - Sports or Arts Performances (Paint/Music/Dance)
 - Practice, practice, practice...build skills/know-how/strengths, refine technique...
 - Good Fortune: Develop New Home Plans
 - Where, how big, # floors/levels, plumbing, heating/cooling, roof type...
 - Prelim/draft/final Floor Plans are NOT your New Home
- Features, Events, and Processes (FEP) Evaluations
- GDSA Capabilities Demonstrations

Phases of a Repository Project and Disposal Research

Plan/Prioritize/Status DR Activities – Program Scale

- Used Fuel Disposition (UFD) Campaign 2012 Roadmap
 - Features, Events, and Processes (FEP) gap assessment synthesis
 - Synthesize into High Priority Topics for UFD Campaign work planning
 - 2012 Roadmap Report (Rev. 01; 2012)
- 2019 Roadmap Update
 - Review/prioritize DR Activities for progress, gaps, and recent Program Direction

- Begin assessment of DR R&D Program in FY2017
- 2019 Roadmap Update Report (Rev. 01; 2019)
- Development of SFWST Disposal Research Five-year Plan (2020)
 - Incorporate/address updated priorities
 - Identify short-term primary objectives (1-2 years; relatively certain)
 - Provide longer-term vision (3-5 years; general guide)

https://www.nwtrb.gov/meetings/past-meetings/fall-2020-board-virtual-meeting----december-2-3-2020

Disposal R&D Strategic 5-Year Plan (2023)

- Builds Upon
 - 2012 Roadmap Report (Rev. 01, 2012)
 - 2019 Roadmap Update Report (Rev. 01, 2019)
 - DR 5-Year Plan (2020; 2021)
- Short-term *Primary Objectives* (1-2 years; relatively certain)
- Longer-term Vision (3-5 years; general guide)
- Progress Updates

SFWST Disposal Research R&D 5-Year Plan – FY2023 Update

Spent Fuel and Waste Disposition

SFWST Disposal Research R&D 5-Year Plan – FY2021 Update

Spent Fuel and Waste Disposition

Prepared for U.S. Department of Energy Spent Fuel and Waste Science and Technology (SFWST)

Sassani¹, D.; Birkholzer², J.; Camphouse¹, R.; Freeze¹, G.; Meacham, J.; Mendez¹, C.; Price¹, L., Stein, E.¹ ¹SNL; ²LBNL

> August 14, 2023 M2SF-23SN010304083 SAND2024-01688R

Spent Fuel and Waste Science and Technology (SFWST)

U.S. Department of Energy

Sassani¹, D.; Birkholzer², J.; Camphouse¹, R.; Freeze¹, G.; Stein¹, E. ¹SNL; ²LBNL

> August 12, 2021 M2SF-21SN010304054 SAND2021-12491 R

Prepared for

https://www.nwtrb.gov/meetings/past-meetings/fall-2020-board-virtual-meeting----december-2-3-2020

GDSA Framework Summary

- GDSA Framework Development Guided by
 - Roadmap
 - FEP analyses
 - DR 5-yr plan
 - International influences
- Model Capability Development Decisions Rely on
 - Readiness considerations
 - Prioritization considerations
- Framework Provides Status of GDSA Model Capabilities

GDSA Status of Generic FEP screening (from Vaughn et al. 2012)

Source (Inventory and Waste Form)

- Radionuclide inventory (heat generation, decay and ingrowth)
- Waste form degradation (dissolution processes)
- Gas generation

- Radionuclide release and transport (mobilization, early release [e.g., from gap and grain boundaries], precipitation/dissolution)

Near Field (Waste Package, Buffer, Backfill, Seals/Liner, and DRZ)

- Waste package degradation (corrosion processes, mechanical damage, early failures)
- Evolution/degradation of EBS components and DRZ
- Effects from rockfall, drift collapse (e.g., salt creep)
- Fluid flow and radionuclide transport (advection, dispersion, diffusion, sorption, decay and ingrowth)
- Chemical interactions (aqueous speciation, mineral precipitation/dissolution, *reaction with degraded materials*, surface complexation, radiolysis)
- Thermal effects on flow and chemistry
- Effects from disruptive events (seismicity, human intrusion)

Far Field (Host Rock and Other Units)

- Fluid flow and radionuclide transport (advection, dispersion, diffusion, sorption, decay and ingrowth)
- Effects of fracture flow (e.g., dual porosity/permeability, discrete fracture)
- Groundwater chemistry

Receptor (Biosphere)

- Dilution due to mixing of contaminated and uncontaminated waters
- Receptor characteristics (basis for converting radionuclide concentrations in groundwater to dose)

Key

Red = FEP included, at least to some degree Black = FEP capability lacking or excluded so far

DRZ – Damaged Rock Zone **EBS** – Engineered Barrier System

 Features, Events, and Processes (FEP)

Office of

NUCLEAR ENERGY

 Many excluded FEP (or yetto-be-implemented FEP) are chemical, mechanical, and disruptive FEP

Geologic Disposal Safety Assessment (GDSA) is Applicable to Multiple Generic Disposal Concepts

DR Progress Will Poise Program to Enter the Next Stage

Features, Events, and Processes (FEP) Database Overview

- Historical Information
 - Generic FEP Defined in 2010
 - YMP & WIPP FEP
 - 2012 Generic FEP Prioritization Results
 - 2010-12 FEP Screening Results for Shale, Crystalline, and Salt
 - 2019 Roadmap Update Activities
 - Reference Cases for Shale, Crystalline, and Salt Defined in Earlier Reports (possibly others in the future)

- General Integration Information Program Management Team
 - Tied to Thrusts Defined in 5-Year Plan
 - Reports Support Decision Making by Management
 - Database Will Provide Documentation of Progress

FEP Database/Tool Objectives

- Use FEP Tool to Organize, Integrate, and Status Activities
 - Online database as planning tool
 - Ties work activities to program thrusts/priorities
 - Each work activity maps to detailed FEP being addressed
 - Documents
 - Activity screening approach for GDSA (in/exclude)
 - Approach for intended inclusion into GDSA
 - Time/effort to complete and extent complete
- Demonstrate Progress Toward Program Objectives Status
- Use for Continuous Program Improvement
 - Updates to DR 5-year Plan
 - DR Program Roadmap revisions

FEP Database Inputs

Focused on Work Activities

- Principle Investigators (PI) Define Annual Work Activities
 - Control Account
 - Activity Name and Description
 - Implementation (% Complete)
 - Level of Effort

5/21/2024

- FY to Complete
- PI Map Work Activities to Thrusts (DR 5-yr Plan)
- PI Map Work Activities to Roadmap Update Activities
- PI Map Work Activities to FEP or subFEP
 - Results May Support Inclusion in GDSA
 - Results May Provide Justification for Exclusion from GDSA

FEP Database System Architecture

PI Excel files have tables for Activities, Gaps, mapping Activities to Thrusts, mapping Activities to 2019 Roadmap Activities, and mapping FEP-RefCase to Activities and/or Gaps.

Example Input Table (1 of 2)

	А	В	С	D	E	F	G	н
1 Activ	vity ID	Control Account	🔹 Work Package 💌	Activity Name 📑	Activity Description	ISC 🔽	ISC Rationale	Implementation (%
ACT-0	GDSA-101	GDSA	PFLOTRAN	Agile/Jira system	Software configuration and management			1(
ACT-0	GDSA-102	GDSA	Biosphere	Biosphere modeling	Multi-path radionuclide biosphere model for PFLOTRAN repository PA			ľ
	GDSA-103	GDSA	Framework & PFLOTRAN	Buffer erosion	Add Neretnieks et al. (2017) crystalline repository buffer erosion model to PFLOTRAN			:
ACT-0	GDSA-104	GDSA	PFLOTRAN	Buffer evolution	Add smectite-illite transition model to PFLOTRAN			1(
	GDSA-105	GDSA	RSA & Framework	DECOVALEX-2023 Task F:	Lead repository PA modeling comparisons			Ę

Example Input Table (2 of 2)

E	F	G	Н	Ι	J	К	L	1
Activity Description	ISC 🔽	ISC Rationale 🛛 🔽	Implementation (%) 🔽	Implementation Notes 🔽	Effort 🛛 💌	FY to Complete 🔻	Planning Notes 🔽	
Software configuration			100%	Running well. Annual	Medium	2023	Completed	
and management				maintenance required				
Multi-path radionuclide			50%	Pathways largely	High	2028	On schedule	
biosphere model for				incorporated for several				
PFLOTRAN repository PA				radionuclides. More to do				
				for certain radionuclides.				
Add Neretnieks et al.			20%	1) Conceptual and	Medium	2024	On schedule	
(2017) crystalline				mathematical models	High			
repository buffer				developed and				
erosion model to				documented; 2) coding in				
PFLOTRAN				mapDFN and PFLOTRAN				
				underway				
Add smectite-illite			100%	Model added to	Medium	2023	Completed	
transition model to				PFLOTRAN. Additional	High			
PFLOTRAN				features being				
				considered.				
3 Lead repository PA			85%	Completed models and	Medium	2024	On schedule	
modeling comparisons				analyses. Writing final	High			

FEP Database Future

FEP Database Is in Initial Stage of Development. In the Future, It Will...

- Become an Integral Part of Annual Planning
- Support Future *Roadmap Update* Activities/Long-Term Planning
- Document the Status of the GDSA Model, FEP Screening
 - For all generic repository concepts
- Identify Gaps and Overlaps To Be Addressed
- Identify/Improve PI Integration All Activities Apparent
- Make Efficient Use of Resources

Summary

- Program Shift to Disposal Research and Development Focus
 - Currently within generic conceptual disposal system stage
- Capability Development and Demonstrations for Generic Concepts
 - Poise the program to move to the next stage in ~ 2 years
 - Conceptual schedule for disposal programs covers multiple decades
 - Use U.S. and International experience to efficiently progress through stages
- Processes to Assess SFWST Disposal Research (DR) Activity Progress
 - Program-scale Roadmap (~every 7 years) of detailed R&D
 - Disposal Research Five-year plan with 2-year focus and 3- to 5-year outlook
 - Geologic Disposal Safety Assessment (GDSA) Framework
 - Status of what is in the GDSA Capability
- Move to Roadmap Reimagination: Prepare for Next Stage
 - FEP Database Tool for activity status, prioritization, integration, and Program efficiency

Questions?

References

- ANDRA (Agence nationale pour la gestion des déchets radioactifs), 2005. Dossier 2005: Argile. Synthesis: Evaluation of the Feasibility of a Geological Repository in an Argillaceous Formation. Châtenay-Malabry, France: ANDRA (English translation: original documentation written in French remains ultimately the reference documentation).
- BMWi (Federal Ministry of Economics and Technology, Germany) 2008. *Final Disposal of High-Level Radioactive Waste in Germany—The Gorleben Repository Project.* Berlin, Germany: Federal Ministry of Economics and Technology (BMWi). Available at http://bmwi.de/EN/Service/search.html.
- IAEA (International Atomic Energy Agency) 2013. "Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes," IAEA Nuclear Energy Series No. NW-T-1.24, Vienna, 2013.
- MacKinnon, R. J. 2016. Safety Case Iterations from Generic Studies to License Application, SAND2016-8636PE, presented to JRC (EU Joint Research Centre), Ispra, Italy, September 12-16, 2016.
- McMahon, Kevin A., Bragg-Sitton, Shannon, Mackinnon, Robert James, Saltzstein, Sylvia J., Sorenson, Ken B., Swift, Peter N., and Birkholzer, Jens T. Update of the Used Fuel Disposition Campaign Implementation Plan. United States: N. p., 2014. Web. doi:10.2172/1172802.
- National Research Council / National Academies, 2001. Disposition of High-Level Waste and Spent Nuclear Fuel: The Continuing Societal and Technical Challenges, Washington, DC, National Academy Press.
- Sassani, D. C., Roadmap Overview and SFWST Progress. Presented at SFWST Annual Working Group Meeting, Las Vegas, NV, May 2018. SAND2018-5167 PE, Sandia National Laboratories, May 22, 2018.
- Sevougian, S. D. and R. J. MacKinnon 2017. "Technology Readiness Assessment Process Adapted to Geologic Disposal of HLW/SNF," in *Proceedings of the IHLRWM 2017 Conference*, April 9 13, 2017, Charlotte, NC USA, SAND2017-0179C.
- Sevougian, S. D., G. E. Hammond, P. E. Mariner, R. J. Mackinnon, P. N. Swift, R. D. Rogers, D. C. Dobson and M. C. Tynan (2019a). "Re-Evaluation of U.S. DOE R&D Efforts for Generic Deep Geologic Repositories Roadmap Update," in *Proceedings of IHLRWM 2019 Conference*, April 15-18, 2019, Knoxville, Tennessee.
- Sevougian, S. D., P. E. Mariner, L. A. Connolly, R. J. MacKinnon, R. D. Rogers, D. C. Dobson and J. L. Prouty (2019b). DOE SFWST Campaign R&D Roadmap Update, Rev. 1. SAND2019-9033 R, July 22, 2019. Sandia National Laboratories, Albuquerque, New Mexico.
- SKB (Svensk Kämbränslehantering AB [Swedish Nuclear Fuel and Waste Management Co.]), 2011. Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark: Main Report of the SR-Site Project, Technical Report TR-11-01.
- Used Fuel Disposition Campaign, DOE-NE (UFDC), 2012, Used Fuel Disposition Campaign Disposal Research and Development Roadmap, U. S. Department of Energy Used Fuel Disposition Campaign, FCR&D-USED-2011-000065 REV 1.

26

Office of

NUCLEAR ENERGY